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ADBSTRACT 3/049

Using a Donnell type nonlinear theory and the stability in the <mali
concept of Poincaré, the instability of an infinite-length cylindrical shell sub-
jected to a broad class of axisymmetric loads moving with constant velocity
is studied. Special cases of the general loading function include the moving
ring, step and decayed step loads, The analysis is carried out with a double
Laplace transform-functional difference technique., Numerical results arc

presented for the case of the moving ring load, ML&J
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1. INTRODUCTION

Questions concerning the stability of thin shells subjected to moving
loads occur frequently in the design and analysis of aerospace vchicles., Un-
fortunately the mathematical complexity encountered with the simplest of thesc
problems is formidable and as a result few or no solutions of even the most
idealized cases are available. The analysis to follow focuses on a small but
significant subset of the general question, namely on the instability of thin
elastic cylindrical shells loaded by a class of axisymmetric pressure distri-
butions moving with constant velocity in the direction of the shell generatrix.

For & geometrically perfect cylindrical shell the response to an axi-
symmetric load moving with constant velocity will, of course, be axisymmetric.
Several investigators [1-5] have cxamined this response in the light of lincar
shell theory. Under certain circumstances, however, these motions can be
unstable with respect to nonsymmetric disturbances. Since such instabilities
lead to either a buckling phenomena or finite nonsymmetric oscillations, they
are of considerable interest.

In the present paper, as in {1-4], the problem is idealized by consid-
ering an intinite shell length and a stcady-state form of the axisymmetric
response (Note: Tang [4] alsc considered the initial value problem). The
discussion is devoted to the question of stability of these steady-state motions.

Mathematically, the shell is modeled by a nonlinear set of partial
differential equations. The response of the shell to the axisymmetric ioad
is sought as a static solution of these equations in a coordinate system
moving with the load. Such motions can be visualized as the limiting case
of a transient problem in which the load is applied and brought up to speed
from rest in some manner. The stability of this response is defined accoruing

to the classical concept of Poincar€, i.e., stability is defined on the basis of
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state. Under this concept the analysis reduces to a study of a sct of perturba-
tion or so-called variational equations (''cquations aux variations'' of PPoincardj.
These equations are linearized under the assumption of infinitesimal disturbances
and stability in the small is considered., The usual difficulty regarding the exist-
ence of variable coefficients in the variational (\quations. is overcome by use of
a double Laplace transform-functional difference technique.
Becoure ei
4 the scope of the subject and space limitations, this paper con-
cerns only sufficient conditions for instability and a method for determining an

upper bound on the transition from stability to instability. As a numerical

example the problem of a moving ring load is considered.

2. FORMULATION OF THE PROBLEM
The Equations of Motion
All motions of the shell will be referred to the undeformed shell as
illustrated in Fig. 1. Employing a Donnell type theory [6], the equations of
motion can be written as a set of two equations: one governing the radial
equilibrium of the shell and the other being the conditicn of compatibility. In
terms of the radial displacement, W, of the midsurface and a stress function,

F, these are respectively:

2 2. 2 2. 2. 2. 2 2.
4 a°F 9°W A°F 8°W  8°F 8°W 1 a°F 9 W
DVW =P+ = —— - 2oy 3%y * 2 313 2 Ph—
aY < ax axX< aY° 2 ox oT
(1)
4 3w % 8w ow 1 8w
VF=Ehllggsy) -—= 7 7 2]
X" 8y X
where F is related to the stress resultants by
2.2 2 2 2%F
Ny = 3°F/8Y", N, = 9 F/oX°, Nyv © - 5%3%

Here D denotes the flexure rigidity, P the normal surface loading, p mass




operator,

Since equations (1) are well known their derivation will not be dis-
cusscd, The reéder 15 referred to {6,7] for details. It should be noted, how-
ever, that the use of (1) requires that strains and rotations are small compared
to unity and _;_r(( AW/0Y. This latter approximation is usually associated with
Donnell and is valid if, upon deforming the square of the number of circum-
ferential waves, n, is large compared to unity. For thin shells n > 3 is
usually sufficiently large. For the special case n = 0 (axisymmetric motions),
Donnell's approximation is not involved since V and 9W/dY are identically zero.
Finally, it is evident that only radial inertia was included.

In the discussion it will be convenient to introduce the nondimensional

quantities

w=W/a, {= F/aZEh. x=X/a, 6=Y/a

(2)
t =2 VE/p .o gy
Substitution of (2) into (1) yields
44 P _ L 13 -
BV w =gt w 2o T L Voo Wi
(3)
4 2
Viic ('wxo) -wxx(l‘*'wgo)
4 h ¢ 2 4
where - = (Z) /12(1-v7), VI )= )xxxx+2( )xx60+( )0906

and ( )x denotes 9( )/dx, etc.
The Loading Condition
. U .
The shell will be assumed loaded by an axial stress resultant, I\X {(posi-
tive in tension) and an axisymmetric lateral pressure distribution moving with

velocity V_ and defined by:
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PlE,) = B ol e [P 1 3 Pe b a]eneg (e s 8 pre K
1 C -1 ] (@] n:l n 1 o Kzl k

P

where {;1 = X-V_. T. Here N and K are f{inite, PU and PO are rcal counstants,

e

Pn, P;, Qn’ 571( arc in general complex valued and Re Qn,Q:> 0. The quantities
6(&1) and H(ijl) are, respectively, the Dirac delta function and the Heaviside
step function. Several examples of the type of loads that can be constructed
from equation (4) are illustrated in Figs. 2a, b, ¢ and d. They include the
moving ring load, step load, decayed steps and general pulse (including internal
pressure and axial compression) respectively. Many load distributions not
falling directly into the above class can be closely approximated by (4). The
coefficients can be determined by a collocation procedure or by minimizing

the total square error between the actual load function and the approximation.

1 P e — o am kD PRV S 5 T ‘A - Fa
The auestion of completeness of the exponcential portions of {(4) as N or K - &

has been discussed by Erdelyi [20].
In the nondimensional form (2) the load velocity will be denoted by
R
M=V, (E/p) so that g = qla{ x -Mt)} .

The neglect of such guantities as rotary inertia, transverse shear
deformation and longitudinal inertia in the present theory will necessitate a
restriction on the magnitude of the foad velocity., In this connection only the
case where the load velocity is less than the minimunm velocity for which
axisymmetric sinusoidal wave trains can be propagated in the shell will be

considered. This is equivalent to the restriction:
1
3 2
V<V, = \/E/p [2/\/3(1-v2) + N&/Eh] (5)

where the quantity N)O( will be considered only in compression, i.c., NX =0,
For steel shells, with Ng(: 0, Vco lies between 400-2000 f.p.s. for

a/h = 1000-40 respectively. The effect of Ng(< 0 is to lower these values.
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o . ... . ) . .
The value of NX yielding Vco = 0 is the classical buckling load due to axial com-
pression, For all compressive loads less than this value Vco> 0. Physically
Vco marks a basic change in the character of the axisymmetric response, The
necessity of the restriction (5) will be discussed later,
Axisymmetric Response
The response of the shell to the load (4) will be obtained as a solution

of equations (2) of the form:

w(x,8,t) = ws(x—}\{t)

(6)

fxx(x,e,t) = fs {(x-Mt); fBO(x,O,t) = fs (x-IvIt); &. =0
XX 00 x e

Definition of Stability
Let us perturb the steady-state motion W and fq hy, respectively, the

quantities {{x,0,t) and n(x,0,t)., If wp and fp denote the perturbed solutions

we have
w_ oz w +
P [
(7)
{ =f +n
P s

Inserting w, and f, into the nonlinear cquations (3) and neglecting powers of

{ and m above the first we obtain linear var:iational equations for { and n. We
shall consider only those solutions of the variational equations which are
regular as Ix! — o for fixed 6 and t. If all such solutions are bounded as

t — o the shell will be said to be stable, otherwise unstable. More precisely:

w_ and f, are stable iff given an €> 0 and t_} §= 8(c ,to) 2! (,(x,e,to)l and

M(x,O,tol < § implies |4(x,0,t)] and In{x,0,t)l < €.
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3. GENERAL ANALYSIS
The Axisymmetric Response
Although equations (2) are nonlinear, the present shell theory is such
that (2) reduce to linear equations for V = 3/30 = 0 if it is assumed that the
pre-tension or compression of the cylinder, N; is maintained as a constant
at X = £ 00. In the interest of brevity we merely state the resulting axisym-

metric equations (the reader is referred to [8] for details):

4 s ) _ *
Bw, -N, W tw bw = qla(x-Mt)] + vNy
XKXXX XX tt

(8)

At this point recall that the effects of longitudinal inertia, rotary
inertia and shear deformation were neglected in (1) and hence (8). An estimate
of the validity of these approximations can be made by referring tc the works
of Tang (4] and Jones and Bhuta [l]. A comparison of the phase spectrum
of (8)(with zero right hand side)with the more exact theory of [4])which includes
both rotary inertia and transverse¢ shear deformation indicates that (8) i1s in
general a valid approximation only if the load velocity, V_ , i& less than the
cutoff velocity VC0 given by (5). Further, {[1] indicates the effects of longi-
tudinal inertia are negligible for V < Vco‘ In view of these results we have
placed the restriction (5) on V_ .

The axisymmetric response of the shell is obtained by solution of (8)
under the condition that w o= ws(x-Mt) = ws(g). This leads to the following
total differential equation for w

Z *
plwit ¢ (ME-Ng)w '+ w_ = qlaf) + vNy (9)

where ( )' = d/dE.
Requiring only that the solutions of (9) be bounded as £/ — o, one

obtains ws(g) as:
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o0

w () = f g(&,2) [qlax) + vN;} da (10)

-

where g(£,A) represents the Green's function of equation (9) and has the form:

2 .
g(g,k_) = ?1 gl e‘Ql(g'K) , g_l >0
1; _ (11a)
= X g. e+m(§‘>‘) , £E-2 <0
i=1"1
Here
4 :
g 2= ———— (% ™) 11 (% M)
’ 4 4
4(p -S\T’)Z
1 1
4,27 SIE MY s @ R (i 1b)
! p

Evaluation of the integral under the assumption that the arguments of the
exponentials in the loading function are not roots of the characteristic equation

of (9) yields wg(&) formally as

£ -a.¥
w(§)=C + X C. e 3, I=N+2;, £>0
s o =1
2 (12)
" £ « a. *§ -y
=C + T C e? , £T=K+2; £>0
o _]:1 J

E-3 ) 52
where Cj' C‘j . aj and a; are in general complex valued and Re ui> 0, Re Qj> 0.

The Variational Equations

In the following, it will be convenient to introduce the transformation:
E=x-Mt, 6 =0, r=t¢ (13)

Application of (13) to (3) and substitution of the perturbed motions (7) into the

resulting differential equations yields the following variational equations
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4 *
prots - (M) Leg + w0 (E)ngg? (VN-w _(£)) Lgq
P - Lt 2ML 1)

Vhn = W) Lo - Lee

where V4( } = | )§§§§ + 2{ )§§60 +{ )0989 and primes denote differentiation
with respect to £. In (14) powers of the perturbations higher than the first
have been neglected.

In the following pages we construct a certain class of solutions of the
variational equations (14) in the Laplace transform plane and outline a method
whereby the transition from stability to instability can be obtained for zerc
load velocity and an upper bound on the transition for moving loads.

Series Representation

We begin by representing the functions { and n by the following Fourier

series
oo
g(g-G,T) :n:O Ln(g!?‘) cosnO
(15)
oD
n(g,oyf) = X I (g,T) cosnb
n=0 P

By use of (14) one obtains the following set of coupled partial differential

equations governing {’r and n, for cach integer n = 0,1,2,...
i

. 2 .k 2.4 4 4 2 P *
534gn + (M _I\x_zn §! )gngg+({3 n -n ws+n va)Qn
ELEE | >
T M B g T T o
2 4 2
n -2n"n_ tnm_ =n"wl'l -L
Peeee "ee T 0T e

Laplace Transform
Next a Laplace transform of (16) with respect to 7 is performed. This

yields in a matrix formulation:



st o MZ-2n%p%-N" -} 2Mp 0
m x oy
z  + + 2!
- N > |—n —-n
0 1 1 -2n 0 0
(17)
4 4 2 % 2 2,
Bn -n"(w_-vN_)tp~ n w ~ pl..n(é.0)-2M§ng(§.0)+§n7(§,0)
Zn "
-nzw” n4 0
3
where z n is the two dimensional vector:
o
2, | o
n
n
and En is defined by
o)
Z_(£,p)= jfe‘PTgn(gn-)dT, T >0 (19)
Y Rep>C

From the regularity conditions on { and n at £ = + o0 we have in addition

the requirement
;n(g,p) remain bounded as Lim (£€1 — o, Rep>C (20)

The terms on the right hand side of {(17) represent the initial conditions
of the problem or the form of the initial disturbance. For the present discus-
sion we will consider as the initial disturbance a delta function in velocity

located at § = 0, and having the form

l;(g,e, 0)=20
(2la)
. (£,0,0) = 8(£) cosnb
which in turn implies
L (£,0)=0, L = 5(E) (21b)

T
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The solution of equations (17) subject to the regularity condition (20) and
the initial conditions (21) is the solution of the boundary value problems in the
domains -< £ < 0 and 0< £ < w consisting of the solution to {17) with zero

right hand side, the condition (20), the continuity relations

+
- =0
dl 2 ¢
~n
___j_g =0, £=0,1,2. (22)
d -
£=0
and a jump condition:
+
= o
~n
= (23)
3
d§ £=0" 0

Second Laplace Transform

We shall now construct the solution to the set of total differential equa-
tions (17). We begin by noting the form of the variable coefficients. Since wS(E,)
consists of a finite sum of exponentials (see (12)) one observes that the variable
coefficients of (17) also consist of a sum of exponentials, In view of this it is
possible to perform a Laplace transform of (17) with respect to §&. We shall
consider, for the present, only the interval 0< § <o and a unilateral transform
will be applied. Inversion will yicld a solution for § > 0 from which the solution
ior £ < 0 is easily deduced.

Denoting the transform of Zn by

o
zn(s) :/ Zn(g) e-s§ df, €> 0, Res>b (24)
one obtains the transformed version of (17) in the form:
- ! =
= X +
L.z (s) jI;I LJ. z, (s aj) + Y (s) (25)

where L o’ ‘_1_.:1. ese» L, represent the following 2 x 2 matrices:
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r x -~
p4s4+52(M2-Nx-2n2;34)-ZMps —s2 ‘
4 4 2 * 2 @
L = +B n -n (CO- va)+p : (26a)
L 52 (sz-nZ)ZJ
1 -uz.j
2 J f
L.=nC ! ' (26b)
~J J 2 !
u.j 0

and ¥ is a two dimensional vector containing initial data at £ = 0 . Its form

is not pertinent to the discussion,

Premultiplying equation (25) by L;l, the inverse of L , we obtain:

bl

M~

ﬁ.(s)

i n (S+aj) + Hs)

fall

n(3) = 3

ft

J
where

_ -1 I |
gs) - l"-o .Y. ’ .é.‘](c;) ~...I:.‘\o ..l:._] (28)

Equations (27) are a system of linear functional difference equations

with variable coeﬁicients.l Our next task is to obtain a suitable solution to

these equations., Note first that the variable coefficients of (27) possess the

property:
Lim w's'(g) =0
E~+co

Thus, it is not surprizing that the solutions of (17) are of exponential order, i.e.,

12, (6) < a e

where a and b are constants and i;ﬁl denotes the norm of ;n and is defined by:

z = T + in
lznf |§J inn

1 For a discussion of the relationship between the Laplace transform and dif-
ference equations and the solution of difference equations, see (10-12].
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However, this implies

QO

@
1?11(5){ :i)f e_sggn d§’$f e-Re sg I}J‘nldgsﬁm for Re s D b,
0

Therefore the following quiescent condition on the second transform must be

satisfied:

Lim z_ (s)=0 (29)
Re sa O

The quiescent requirement (29) is sufficient to render the second trans-
form unique, or more specifically, the solution of the difference cquation
unique, This follows from the fact that all solutions of the homogeneous
counterpart of (27), (representing the diifcrence between any two particular
solutions) are unbounded as Re s +w. {Sec (8] for details). Thus on the basis
of (29) only the trivial solution of the homogeneous equation can be accepted.
There is thus a unique particular solution of {27) to be found.

The desired particular solution can be constructed by the method of

ascending continucd fractions [11} and has the form:

- , .
in(s) =£)(s) + X A.l(s)_gz(m“a. )+ z &j (s)A. (SHI_)' )Q(sﬂij +aj )+

i1 it Tz h 1 2
1 {30a)
+ = A (s)A. (s+a, JA, (s+a, +a. )¢p(s+a. +a, +a. )+ ...
Bprdgeda=tT Tz i3y ng2 J1 2 I3
Equation (30a) can be written in closed form as:
= o N 1 k-1 N
gn(s)=9(s)+N§ oz 4 (s+Z a jp(s+ T a, ) (30b)
=] k=l szl k q=0 Jq r=1 JI'
where a. = 0,
O

The vector function (30) above formally satisfies the difference equation
(27) and the quiescent requirement (29). Further, the component series for

the vector ;n are absolutely and uniformly convergent with respect to s and
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represent analytic functions of s when s ¢ R, where the region R of the complex

s-plane is defined by

Is- (pi—mla]-mzaz-...—m a,)lze >0

11

mj:0,1,2100' H jzlvzyooopf-

Here p; are the roots of the polynomial A Lo(s) = 0 where ALO denotes the

determinant of -Iio‘ The singularities of ?n(s) are isolated poles, located at

8 = pl - mlal—mzaz-... -mfo.l »

mJ = 0,1,2,..., J = 1’2so-tn£

If all problem parameters are fixed, including p, these poles lie a finite dis-

tance to the right of Re s = 0 and ;n(s) is regular for Re s >C = constant,

1
Additional details and a proof of convergence can be found in [8].
Inversion of the s-transform

We will now invert the series (30) term by term, assuming the roots

p, are non-repcated (these points to be discussed later)., Consider first the

definitions:
ALO 8
B.s)=-—=A(s)=1I (s-p JA (s
(31)
8
¢(3)= Il (s— 8
= o Pq)Q( )
q
The 1\4& term of equation (30b) is composed of the product
B, (s) B. (sta.) B, (sta, +...+a, ) B(sta, t...ta, )
—J] .32 I IN-1 | I3 IN
O(s-p ) s-p ta. ) s-p +a. +...+q. ) O{s-p ta. ~...ta, )
( Pq i Pq Jl q Jl IN-1 S 5 ' N
8 ‘
where Il denotes "1 . Inthe Nm term, each factor is inverted separately by
q:

the residue theorem. The inversion of the entire term is then obtained by

repeated use of the convolution integral. After some manipulation the
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following series is obtained for ;n(é,p)z

s Pif 4 §
(6p)== fe 1+ 3z x )fex [(p.-a, WE-E)+p, &]dE, +
z .t =Ligel _]lkl PLIPy iR pkll &
e ¢ 0
2 8
+ Z R.( IR (k ) f -a, -
yr3yel kl'kz“'ﬂl k)R xpl{p; % "% )(é 6.)+(pkl -a, )(&1 -§ )+pk §,1dg,dE,
+ LI BN ) (32)
£ 8 N N
+J ):J k): “‘”(kl)'“Bij Y ... exp[(pi za NE- §)+
1 N=1%17 "+ * 1 Kngp § ¢ q=1 ’q
: N-1 N-2 N-fold
+{p, - X a 1 + -
7 2 %, £-€) (pk q-1a3q) €,-65 )+...+pkN§N]d§N...d§l
. } Q. £>0
Bl )
where BJ (k) = 8 (33)
I ey -p_)

The vectors Q_i, which contain unknown information concerning Qn and
ﬁn and their derivatives (up to the }E—(i) at § = O*, can be regarded as arbitrary
constants to be evaluated later from the boundary conditions, The elements
of each -12}_‘_ vector, héwever, are not indepcndent but are related through the
differential equations (/7). By direct substitution2 of (32) into (17) (with zero
right-hand side) one finds the differential equations are formally satisfied

for eachi=1,2,...,8 if the elements of Qi are related according to:

This cumbersome task can be accomplished by writing C = €C. and obser‘nng
that (32) is a power series in € . Equation (34) then auarantees t;xat {i{7) is sat-
isfied for each order of € .




o) S.
1 i
2 - | s 5 (34)
ng) 1 1
i
2 22
(pl. -n")
where Si = - ——>— and Gi are arbitrary scalar constants,
[

i
Each value of i = 1,2,...,8 in equation (32) represents a linearly inde-

pendent solution to (17) when the p; are non-repeated, Therefore (32) repre-
sents the general solution to the homogeneous part of (17) for § > 0 when the Py
are non-repeated,

The function Zn(g,p) for £< 0 is easily obtained by inspection from
equation (32). One need only replace ¢, o Cj and p. in (32) by 2%, -aj* . C:
and p:: respectively where

1) l*, a;: and C; are obtained from equation (/2)

2) p: are the roots of A~1:o = 0 with Co replaced by C:.

- . We will indicate these changes by "starring" all

quantities where changes occur. Then, for § < 0, ;n has the form (32) with

the changes:
* % % *
PPy f\_j(k) ”’B_j (k), u}. — -a). . Gi — Gi
The unknown constants Gi and Gj are determined from the regularity
condition (20), the continuity requirement (22), and the jump condition (23).

Consider first the continuity and jump relations., Using the idcntity3

N N
pkm YA (pk-p ) =0 when N> m+l and p_ are non-repeated,
k=1 q=
q7k

one can show the series (32) and its equivalent for § <0 possess the following

+ -
property at £ =0 and £ = 0":

This is easily verified by expanding the leading term in partial fractions.
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Equations (40) represent 8 equations in the eight unknowns, Gi(izl to 8}.
However, it can be shown that only 4 (one row) equations are linecarly indepen-
dent., With the vector components bl(r,i) and bz(r,i) as defined in (37b), these
4 equations are
8, .

P bz(r,l)G. =0, r=1to4 (41)
i=1 !

In a similar manner, (20) can be satisfied for § — -® only if

TM®

lz(rl)G =0, r=5t0 8 (42)

%
where bZ is obtained from b2 by the parametric changes described previously.
3¢
The constants Gi and Gi can now be determined from equations (36),

(41) and (42). In matrix form we have

Y-Sl (43)
where A is a 16 x 16 matrix, the elements of which are given by:
e | ~
A N =b (r i) : Ar,i+8 =90 |
'r=lto4,i=1to8 | r=lto4,i=1lt08
r T m-1
m-l i * I
Amta,i =Py Sy ! Anvd,iv8 - Py 5 |
i 1
=lto4, i=1to 8 | m=1to4, i=1to8
A= . -l f (44)
= m= = .a* i
Am+s, 1= Py Am+,i+8” Py f
=1to4, iz=1lto8 m=1to4, i=1to8 |.
- 5
| 0 A b ey
% Arig,i r+8,i+8 2(r i) !
r=5to8, i=1to 8 r=5to8,i=1to8 :
L— —J

where, as usual, the first subscript refers to the row and the second the

column,
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The quantities g and ¢ represent the following 16 dimensional vectors

?1\ ( e.l"o \

= G e = | e. =0 (45)
: N R R
L4 e =
o 7
8 s = 0
16

Premultiplying (43) by ﬁ-l, we obtain g as
-1
& = A e (46)

The solution is now complete. Next we discuss a few properties of the

series for z _.
~n

Properties of _7: (€,p) and Remarks Related to the s-Inversion

The assumption was made, upon inverting z (s). that the roots Py and

dAL (s, p)?

p were not repcated. For all points in the p-plane such that ————-5-—— + 0
the roots of AL (s p) = 0 are non-repeated. It can be shown that
dAL (s p)
-————5—-——— = AL {s,p) = 0 occurs only at branch points of the roots as a func-
tion of p in the p-plane.

Now, let us define the region R,of the complex p-plane by:

(1) lp—pbl = 1 > 0, where Py, are branch points of the roots pi(p) and

x
Py (p) in the p-plane.

(2) lp—pAf Z e 2> 0, where P, are zeros of the determinant of A, AA.

If pe R, and - w< -B< x<B< w, B = arbitrary constant, the series (32) and
its counterpart for £< 0 are absolutely and uniformly convergent with respect
to both § and p. Since the series obtained by an nm term by term §-derivative
possesses the same property of uniform convergence with respect to §, our
differentiation of the series was justified,

If appropriate branch cuts within the region R,are made to render the
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roots analytic functions of p, then each term of the series will be an analytic
function of p. The uniform convergence with respect to p then indicates
:z:n(ﬁ,p) is an analytic function of p when p € R, The points Pa for which the
determinant of A vanishes represent poles of En- The points P, are
possible branch points of En' Additional details and proofs of convergence,
etc., can be found in [8].
Instability Conditions

The vector En need not be inverted to obtain stability information.
Indeed the boundedness of z, 1s governed entirely by the location and type
of singularities of :z:n in the p-plane. From the theory of the Laplace trans-
form [8,10,14] Zn will be unbounded as 7 — w if En possesses singularities
of any type in Re p> 0. To demonstrate instability, therefore, it is only
necessary to show a singularity exists in Re p >0,

The possible singularities of En in Re p > 0 consist of branch points
and poles. It will suffice to consider just the poles, which occur only when
AA vanishes. To gain insight into the problem let us proceed from the static
case, I M = 0 the shell and loading represent a conservative system and
therefore the energy method and the present dynamic method are equivalent
[15] . If one calculates the potential energy of the system according to the
present shell theory, assuming { and n are virtual displacements from the
loaded state, then equations (14) with 8/07 = 0 are the result of requiring that
the second variation of the potential energy vanish (a necessary condition for
the transition from stability to instability)., Equations (15) and (32) with p = ©
represent a solution to these equations which is completed by requiring that
{ and n be regular as [¢€1 — oo and continuity of { and n and their deriva-
tives with respect to x up to and including the third at x = 0, Application of

these conditions leads to the eigenvalue problem:
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Ag=0 (47)
whereby a solution exists iff A_./-_\. = 0. This, however, implies the transition
from stability to instability according to the dynamic method occurs at p = 0
in the p-plane. This zero can be expected to move into Re p> 0 for above
critical values,

For M £ 0 the situation is of course more complex since the system
is nonconservative and the variational equations are non-sclfadjoint. We
note {irst that if p = 0, the parameter M occurs everywhere in the combination
MZ-N;C. It therefore has the same effect as an axial compression of the
cylinder. Since AA (p =0, M= 0) possesses the same propertics as AN ip=0,
M # 0), save an effective change in N;, one deduces by analogy to the static
problem that a zero of AA will appear at p = 0 for some set of load parameters.
This zero can be expected to move into Re p > 0 for increased load magnitudes
indicating an unstable shell.

The above discussion indicates a method whereby one can obtain 1) the
transition from stability to instability for M = 0 and 2) an upper bound on the
transition for M> 0. This is accomplished by 1) selecting all shell and loaa
parameters and a value of n, 2) selecting a characteristic load parameter,
say A, which is a function only of Cj and C; for j > 04', 3) truncating the
series (37b), numerically plotting AA for p = 0 versus A, selecting that value

of A for which a zero first occurs and minimizing with respect to n. That

this load is an upper bound for M >0 can be easily demonstrated by numecri-

cally showing that the zero moves into Re p >0 for larger A values,
For purposes of the above calculation it can be shown that it is suf-

. =5 . . .
{icient to group the roots p. and Py according to their real parts, denoting

=
Since the roots p; and p1 do not depend on C;, C for ;>0 they need not be

recalculated for each A ir A is selected in thxs manner.

> Explicit formulas for the roots p; and p1 for the case M = 0 can be found
in {161].
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those with positive real parts as i =1 to 4 and those with negative real parts

as i = 5to 8, The order of any roots with zero real parts is not important.

4, NUMERICAL EXAMPLE
Let us consider as a numerical example the case of a ring load moving
with constant velocity., Here the load is defined by

P

- - ° _ - £
P = PC 68(X-V, T), NX 0 or q 5N &5(¢&), Nx 0 (48)

and is illustrated in Fig. 2a., The axisymmetric response for this load has

the form (1) if the constants g are multiplied by PC/Eh, ine.,

P
b3 c B B
C.=C. == g ,3j=1,2;C.=C. =0, j=0andj>2
j J Eth / j J ) ne

(49)

a = aJ given by (11) for j = 1, 2.
If we select as the parameter A the quantity P, /Eh, the matrix A (44)

can be written

A=K + 2K +KZK +A3K e {50)

where the matrices K. do not depend on A, They are obtained from (44) by
grouping terms of like A powers.

Truncating the series (50) and setting p = 0, Aﬁ‘: was numerically
evaluated by use of a digital computer, A Reguli Falsi method was employed
to determine the minimum A for which a zero of AA occurred at p = 0 (AA
was found to be real valued for p = 0). In the neighborhood of this value of A

( @pa = 100 To 1000 )
(50) was found to converge quite rapidly for a wide range of shell paramecters
For all cases where M <,95 the correction due to the retention of more
than three terms of (50) was found to be negligible.

The behavior of the minimum eigenvalue as a function of the number

of circumferential waves, n and velocity, Vi , is illustrated in Fig. 3a for
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the case a/h =100 and v = 0.3, For each value of n a curve similar to that
of Fig. 3b can be constructed, Fig. Bé)is the minimum envelope of all such
curves and represents an upper bound on the transition from stability to
instability. The shell is unstable for all loads above the solid line. This
was verified numerically by selecting a small positive real p value and showing
that a zero of AA occurred in Re p >0 for loads above this line. For all a/h
values in the range of 100-1000 the form of the curve in Fig. 3b was found to
remain essentially invariant,.

For M or V_= 0, the results obtained were the buckling load for an
infinite shell subject to a uniform radial line load. Below a comparison is
made with existing analyses on the subject for a/h = 100. Fig. 4 indicates

the behavior of this buckling load as a function of a/h,

Present theory: PC/Eh = 3.9ix 10.4
Brush [18], long finite shell: o= 4,20x 10 %
Hahne [19], " ' . "= 4.61x 102

The agreement is quite good. Nu comparison can be made for the dynamic
case since analyses on the subject apparently do not exist,

An interesting result can be observed from Fig. 3b. Prisekin [2]
suggested that since the amplitude of the axisymmetric response varies
inversely with [l—(\/;_—\/'co)z] /2 the transition from stability to instability
should be proportional to this quantity. Our results, however, indicate this
transition should lie below or at a curve which is very closely approximated
by 1-(V_ /VCO)Z.

Concluding Remarks

A method for determining (1) the transition from stability to instability

Axial compression ¢an e%sily be.incorporated into these results by replacing
ey !
Vi /Vco by (Ve /Vco) _(Nx'/h)(a"ﬁ\ 3G-R) } 2 where 1n Doth cates Veo 1S

compPuteDd ~€MM (5) wiTh N,‘f’:o.
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for a class of axisymmetric static pressure distributions and (2) an upper
bound on this transition when the distribution moves with constant velocity
has been discussed. Utilizing the method the case of a moving ring load was
considered. This example indicated a marked decrease in stability as the
load velocity approached the minimum velocity for which axisymmetric
sinusoidal wave trains can be propagated in the shell.

Naturally one would like to interpret the results of the analysis in
terms of shell buckling. As with any infinitesimal stability analysis, how-
ever, care¢ must be exercised in this respect. For example, states that are
found stabie by an infinitesimal analysis may actually be unstable if finite
disturbances are considered. Inthe present case one cannot differentiate
between instabilities that iead to buckling or those that merely lead to

finite nonsymmetric oscillations,
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Fig. 2d: General Moving Pulse with Internal Pressure and Axial
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Fig. 3a: Load Parameter versus no. of circumferential half waves n,

for a/h = 100, v = 0.3, N: = 0,
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m S. )
4 _ 3 (0+)=pf"§ 1$G for m< 7
dt ol
* (35)
m._ ” S *
d z (0)=pim;”G. for m <7
ag™ 1 { i
Application of (22) and (23) with use of (35) yield
8 m *m ¥
Z P. Go - pi G’- = 0’ m = 0,1.2.3
o & i i
8 % - (36)
m m _ -
Z ]S, Gy-p, S, G, =0, m=0,1,2
i=1
> 035.G - ™ st - 1/p%
{= Py 2{My ~ Py iviT

—

To apply the condition (20) it is nccessary to obtain from (32) the limit-

ing form ofz for large £. One {finds

- 8 p.68 5b1(r'i) (37a)
where
bl(r,i) . ;
=116 .+ T R.(r)C_ ..  +
i = T, i)
bz(r,i) Ji
1 8 (376 )
+ Z R.AODR, ()C .+ C .o
jrip=l k=1L T 1 PBIPe T e
4 8
+ = z RyADI R, (k)R (kp)ewoR . (kg ) s

. o oy j j —
leooo._]N-l klnuno,kN_l l 1 2 3 N

C .+ C L
CTekpl o Tk,
S,

'Cr k s . N .o-Cr k s . . 'Cr i.. j j + !
] 3!]1’.’ 2!_)3 ] N-I,JI,JZ...JN'I s ,Jla 2’.0‘) N -ooJ
‘ i
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In the above, 6_, is the Kronecker delta and the quantities C_ . . . are
ri ryijyes ey

defined by:

= -pta. +a. te...tA if -p.+d,
1/p_-p, % ®, g I PP,
- 0 i A e

e . +to..%Q, 0
Cr,lijl,szoo- 'JN JN %

Thal —
Equation (37a) indicatesythe growth or decay of z  as £ — oo depends

entirely on the sign of Re GO 1,2,¢¢.,8., To ascertain if (20) can be
satisfied it is necessary to consider C large in (19) and determine the large
Ip| behavior of the roots pi(p). This is accomplished by noting that the

equation a L0 = 0 is satisfiied by the asymptotic series:

8 8
3:6[80+,__l+ 22+ 33+."] (38)
P (p)T (Vp)

Equations governing the coefficients, s _, are obtained by substituting (38) into

i

ALO = 0 and equating terms of the same p-order. Solution of those equations

for the leading terms of (38) yield the following asymptotic values:

*  Vp (1+i) *  Vpll-i) | *
Plvpl ~ H pz'pZN ¢ p3lp3 n
V2 vz p

. x_ Yp(-i (39)
H P6'P6 »

V2

Vp (1+i

vz B

* ¢
PgrPy™n i P5rPs™ -

% %
P7D P7~ -n P80 p8 ~-n

where the designations as to root number were purely arbitrary.
Identifying the roots by their asymptotic values above and selecting the
positive branch of /p in the p-plane, it is evident that (20) can be satisfied

only if

8 bl(r,i) - (40)
23 }G1=0 forr =1 to 4,




